If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+8n+9=0
a = 1; b = 8; c = +9;
Δ = b2-4ac
Δ = 82-4·1·9
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{7}}{2*1}=\frac{-8-2\sqrt{7}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{7}}{2*1}=\frac{-8+2\sqrt{7}}{2} $
| 4(6x-10)=8 | | -2(3x-6)=3(x+1) | | 6t-1=3+7 | | 2+15=7+b | | 5b-–7=8 | | 9+3=2n+10 | | Y=13x+25 | | 11x+13=10x+5 | | 12n+22=10n+2+7 | | 3(p+6)-8+11p=0 | | 8x-4=13x+1 | | 4x/9=16/18 | | A+3A+a=30 | | -8(4u+20)=16-10u | | -8(4u+30)=16-10u | | 5p-3=3(6)+5p | | 2(2x)=5 | | -7(2a-2)=-28-7a | | -2.4=(x-69)/(2.8) | | (10x-45)+x=180 | | 3+(3)(-2)-(3)(-2)=x | | -7(2a-2)=28-7a | | 1x+9=5x | | 1-3x=21 | | 5x+3x=24x-5-2 | | 75+x+55=180 | | 32^3x=4 | | 4(n-8)+6=-2 | | 6x+171=5x+162 | | -16v+7-8v=15+8(-7v+19) | | 4(3m-1)=2m+16 | | (8.73+-1.86y)+y=7 |